论文简介如下:
本研究介绍了使用基于纳米限域法中的溶液法,成功合成的新型 Mg(BH4)2@V2C、Mg(BH4)2@Nb2C 以及 Mg(BH4)2@Ti3C2复合材料,实现了 Mg(BH4)2在 Mxene 上稳定的复合结构。在这些复合材料中,Mg(BH4)2@V2C的初始放氢温度为76.4 °C,并在 300 °C 时释放出 9 wt% 的氢气,表现出最佳的放氢性能。其两步放氢活化能 (104.44 kJ/mol 和 118.52 kJ/mol) 显著低于纯 Mg(BH4)2,表现出更好的放氢动力学;经过 4 次吸放氢循环后,复合材料仍能释放约4.9 wt%的氢,表现出优异的循环稳定性。进一步的结构研究表明,V2C 实际上充当了“官能化”基质,它通过纳米限制和催化效应的结合改善了复合材料的储氢性能,促进了氢的解吸和吸收。这项工作为设计高性能储氢材料提供了关键见解,并推动了下一代储氢系统的开发。
This study presents the synthesis of novel Mg(BH4)2@V2C, Mg(BH4)2@Nb2C and Mg(BH4)2@Ti3C2 composites using a solution-based nanoconfinement strategy, achieving robust architecture of Mg(BH4)2 onto Mxene structures. Among these composites, the Mg(BH4)2@V2C composite exhibited an initial dehydrogenation temperature of 76.4 °C and released 9 wt% hydrogen at 300 °C, which exhibited the optimal hydrogen release behavior. Its two-step dehydrogenation activation energies (104.44 kJ/mol and 118.52 kJ/mol) were significantly lower than those of pure Mg(BH4)2, showing improved dehydrogenation kinetics. After four absorptiondesorption cycles, the composite could still desorb 4.9 wt% hydrogen, demonstrating excellent cycling stability. Further structural investigations revealed that V2C actually acted as a “functionalized” matrix, which improved hydrogen storage through a combination of nanoconfinement and catalytic effects, promoting both hydrogen desorption and absorption. This work provides critical insights for designing high-performance hydrogen storage materials and advances the development of next-generation storage systems.
全文下载:
https://www.sciencedirect.com/science/article/abs/pii/S0360319925028903?via%3Dihub